EE 230 Homework 8 Spring 2010 (Note: Since there is an Exam on Friday March 12, this assignment will not be collected but solutions will be posted)

Problem 1 The circuit shown is a comparator with hysteresis. In this circuit, assume $R_2=10K$ and $R_1=100\Omega$

- a) Determine the width of the hysteresis region
- b) Plot the transfer characteristics. Assume the Op Amp is biased with $\pm 15V$ power supplies

Problem 2

Design a comparator that has an output of 10V (± 250 mV) if V_{IN}<1V and 0V if V_{IN}>0V. The region between 0V and 1V is a hysteresis region, Assume you have available an operational amplifier biased with +15V and -15V supplies and that V_{SATH}=15V and V_{SATL}=-15V. You can use any number of resistors of any value.

Problem 3

Design a comparator with a hysteresis window for $-0.5V \le V_{IN} \le 0.5V$ and that has a high output for $V_{IN} \ge .5V$ and that is low for $V_{IN} \le .5V$.

Problem 4 Assume the op amp is ideal and $R_2/R_1=2$. Determine the characteristic equation and the poles of the following circuit if R=1K and C=100nF.

Problem 5 Assume the op amp is ideal except for a frequency dependent gain can be modeled as A(s)=GB/s. Assume it is biased with $\pm 15V$ power supplies and that $R_2=10K$, $R_1=2K$ and $R_3=1K$.

- a) Obtain an expression for the poles and zeros of this amplifier as a function of R_4
- b) What is the minimum value of R_4 that will result in stability of this amplifier
- c) Obtain an expression for and plot the transfer characteristics if $R_4=0.5R_{4min}$ where R_{4min} is the minimum value of R_4 for stability.

Problem 6 Determine the poles of the following networks without applying excitations. Which are stable?

Problem 7 Assume the nonlinear device has the transfer characteristics shown in the figure. Obtain the transfer characteristics of the following circuit.

Problem 8 Plot the transfer characteristics for the following circuit. Assume V_{SATH} =12V and V_{SATL} =-12V.

Problem 9. Assume the op amp in the following circuit is ideal and that $V_{SATH}=12V$ and $V_{SATL}=-12V$. Design the circuit so that the frequency of oscillation is 2KHz and the p-p value of $V_{OUT1}=8V$.

.

